

## **Compact Multi-band Antenna for Wireless Applications**

The aim of this application note is to demonstrate the possibilities of WIPL-D Pro 3D EM Solver regarding simulation of complex printed antennas in a wide-band. Also, the aim is to illustrate the simplicity of creating models of this type of antennas in the specialized tool, AW Modeler. The software takes into account the influence of a finite-size ground plane backing the antenna. The antenna is simulated in the frequency range between 0.5 and 3 GHz and is modeled as being printed on a dielectric substrate with  $\varepsilon_r = 4.4$  and thickness of 1.6 mm.

## Antenna Model

The antenna is fully modeled using **AW Modeler**, an add-on tool for easy general 3D EM modeling and quadrilateral meshing. To obtain satisfactory results for printed structures techniques like edging and total imaging have to be applied. Total imaging, otherwise a lengthy process, is performed automatically by AW Modeler.

The model (Fig. 1) is made according to specifications from the Microwave Journal published in May 2008 [1]. Final dimensions are used, listed in Table 1 in [1] and repeated here for clarity in Tab.1.

The complete process of fully-parametric model creation and transfer to WIPL-D Pro lasts a bit more than one hour.



Figure 1. Antenna with finite ground plane

|    |      | ,  | 8 1 1 |
|----|------|----|-------|
| xf | 0    | Wf | 3     |
| W1 | 6    | W2 | 13.5  |
| W3 | 2.75 | W4 | 13.5  |
| L1 | 8    | L2 | 10    |
| L3 | 17   | L4 | 5.5   |
| М  | 2.3  | S  | 1.5   |

Table 1. Antenna dimensions in mm, according to [1]

Final WIPL-D model is obtained after performing export from AW Modeler, with Total Imaging enabled for the meshing stage (Fig. 2).



Figure 2. WIPL-D model

## **Simulation of Antenna**

The created antenna model was simulated using WIPL-D Pro v6.4. The S11 parameter is ploted in the frequency range from 0.5 to 3 GHz (Fig. 3). The observed resonances were identified with simulation and measurements [1] as in Tab. 2. Corresponding radiation patterns were obtained for the operating frequencies of f=0.9 GHz (Figs. 4 and 5), f=1.9 GHz (Figs. 6 and 7), and f=2.4 GHz (Figs. 8 and 9).

Table 2. Simulated and measured [1] resonances

| sim  | 0.89 | 1.09 | 1.32 | 1.38 | 1.66 | 1.8 | 1.92 | 2.13 | 2.4 | 2.63 |
|------|------|------|------|------|------|-----|------|------|-----|------|
| meas | 0.89 | 1.09 | 1.32 | 1.38 | 1.66 | 1.8 | 1.91 | 2.15 | 2.4 | 2.61 |







Figure 4. Eq – 3D diagram at 0.9 GHz



Figure 5. Eθ – 3D diagram at 0.9 GHz



Figure 6. Eq – 3D diagram at 1.9 GHz



Figure 7. Eθ – 3D diagram at 1.9 GHz



Figure 8. Eq – 3D diagram at 2.4 GHz



Figure 9. Eθ – 3D diagram at 2.4 GHz

The simulation at a single frequency lasts 1 minute on a Intel Core2 Duo CPU with 2.66 GHz clock rate. The memory requirements are 87 MB.

[1] A. A. Eldek, "Analysis and Design of a Compact Multi-band Antenna for Wireless Communications Applications", Microwave Journal, vol. 51, no. 5, pp. 218-230, May 2008.

www.wipl-d.com contactus@wipl-d.com